A non-parametric conditional factor regression model for high-dimensional input and response
نویسندگان
چکیده
In this paper, we propose a non-parametric conditional factor regression (NCFR) model for domains with high-dimensional input and response. NCFR enhances linear regression in two ways: a) introducing low-dimensional latent factors leading to dimensionality reduction and b) integrating an Indian Buffet Process as a prior for the latent factors to derive unlimited sparse dimensions. Experimental results comparing NCRF to several alternatives give evidence to remarkable prediction performance.
منابع مشابه
A Non-parametric Conditional Factor Regression Model for Multi-Dimensional Input and Response
In this paper, we propose a non-parametric conditional factor regression (NCFR) model for domains with multi-dimensional input and response. NCFR enhances linear regression in two ways: a) introducing lowdimensional latent factors leading to dimensionality reduction and b) integrating the Indian Buffet Process as prior for the latent layer to dynamically derive an optimal number of sparse facto...
متن کاملA Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response
In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...
متن کاملQuantile Regression Forests
Abstract Random Forests were introduced as a Machine Learning tool in Breiman (2001) and have since proven to be very popular and powerful for high-dimensional regression and classification. For regression, Random Forests give an accurate approximation of the conditional mean of a response variable. It is shown here that Random Forests provide information about the full conditional distribution...
متن کاملComparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملUsing MODEA and MODM with Different Risk Measures for Portfolio Optimization
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1307.0578 شماره
صفحات -
تاریخ انتشار 2013